Comprehensive Virology 10: Regulation and Genetics Viral Gene Expression and Integration (Comprehensive Virology)

Comprehensive Virology 10: Regulation and Genetics Viral Gene Expression and Integration (Comprehensive Virology)

The time seems ripe for a critical compendium of that segment of the biological universe we call viruses. Virology, as a science, having passed only recently through its descriptive phase of naming and num­ bering, has probably reached that stage at which relatively few new­ truly new-viruses will be discovered. Triggered by the intellectual probes and techniques of molecular biology, genetics, biochemical cytology, and high-resolution microscopy and spectroscopy, the field has experienced a genuine information explosion. Few serious attempts have been made to chronicle these events. This comprehensive series, which will comprise some 6000 pages in a total of about 22 volumes, represents a commitment by a large group of active investigators to analyze, digest, and expostulate on the great mass of data relating to viruses, much of which is now amorphous and disjointed, and scattered throughout a wide literature. In this way, we hope to place the entire field in perspective, and to develop an invaluable reference and sourcebook for researchers and students at all levels. This series is designed as a continuum that can be entered anywhere, but which also provides a logical progression of developing facts and integrated concepts.

Format: Paperback / softback, 496 pages

Age Range: 0+

Other Information: XVI, 496 p.

Dimensions: 25.4 x 17.8 x 2.6 centimeters (0.97 kg)

Writer: H. Fraenkel-Conrat

Promotional InformationSpringer Book Archives

Table of Contents1 Translation of Animal Virus mRNAs in Vitro.- 1. Introduction.- 2. Preparation and Comparative Properties of in Vitro Protein-Synthesizing Systems.- 2.1. Frog Eggs and Oocytes.- 2.2. Reticulocytes.- 2.3. Ascites and Tissue Culture Cells.- 2.4. Wheat Germ.- 2.5. Comparison of Properties.- 3. Translation of DNA Virus mRNAs.- 3.1. Adenoviruses.- 3.2. Papovaviruses.- 3.3. Vaccinia Virus.- 4. Translation of RNA Virus mRNAs.- 4.1. Class 1 Viruses (mRNA = Genome).- 4.2. Class 2 Viruses (Genome Complementary to mRNA).- 4.3. Class 3 Viruses (Segmented Genomes).- 4.4. Class 4 Viruses (RNA Tumor Viruses).- 5. Factors Affecting Efficiency of Translation of Viral mRNAs in Vitro.- 5.1. Methylation-Dependent Translation of Viral mRNAs.- 5.2. Effects of Interferon on Cell-Free Protein Synthesis.- 6. Conclusions.- 7. References.- 2 Defective Interfering Animal Viruses.- 1. Introduction.- 2. General Properties.- 2.1. Defectiveness.- 2.2. Interference.- 2.3. Enrichment.- 2.4. Hunting for the DI Particle.- 3. Viral Systems Containing DI Particles.- 3.1. Papovavirus.- 3.2. Other DNA Viruses.- 3.3. Reovirus.- 3.4. Picornavirus.- 3.5. Togavirus.- 3.6. Rhabdovirus.- 3.7. Paramyxovirus.- 3.8. Orthomyxovirus.- 3.9. Arenavirus.- 4. DI Particles and Viral Disease.- 4.1. Are DI Particles Made in the Animal?.- 4.2. Protective Effects of DI Particles against Viral Disease.- 4.3. Persistent Viral Disease and DI Particles.- 4.4. Persistent and Carrier Cultures.- 4.5. Resistance and Susceptibility in Cell Cultures.- 4.6. Other Hypotheses.- 5. References.- 3 Virion Polymerases.- 1. Introduction.- 1.1. In Vitro Reaction Conditions Used for Assaying Virion RNA or DNA Polymerases.- 1.2. In Vivo Assays for Virion RNA or DNA Polymerases.- 2. Proof That Polymerases Are Virion Components.- 2.1. Association of Polymerase Activities with Virus Particles.- 2.2. Purification of Viral Polymerases.- 2.3. Antigenic Comparisons of Virion Polymerases from Similar Virus Types.- 3. Product Analyses of Virion Polymerase Reactions.- 3.1. Arenaviruses.- 3.2. Bunyaviruses (and Bunyaviruslike Viruses).- 3.3. Orthomyxoviruses: Influenza Viruses.- 3.4. Paramyxovirus Viral Transcriptases.- 3.5. Reoviridae (Diplornavirus) Transcriptases.- 3.6. Rhabdovirus Transcriptases.- 3.7. Poxvirus Transcriptases.- 3.8. Possible RNA Polymerases Associated with the Icosahedral Cytoplasmic Deoxyriboviruses.- 3.9. Herpesviruses, Adenoviruses, Papovaviruses, and Parvoviruses.- 3.10. DNA-Directed DNA Polymerase Activity of the Putative Hepatitis B Virus.- 3.11. RNA Transcriptases of Coronaviridae.- 3.12. The Reverse Transcriptases of Oncornaviruses and Similar Virus Types.- 4. Conclusions.- 5. References.- 4 Animal Virus-Host Genome Interactions.- 1. Introduction.- 2. Methods Used to Demonstrate Integration of Viral Genomes.- 2.1. Work with Temperate Bacteriophages and Lysogenic Cells.- 2.2. Experimental Approaches to the Analysis of Viral Genomes in Chromosomes of Eukaryotic Cells.- 3. Bacteriophage Models.- 3.1. Bacteriophage ?.- 3.2. Bacteriophage Mu.- 4. Adenoviruses.- 4.1. The Adenovirus System.- 4.2. The Viral DNA.- 4.3. Integration of Adenovirus DNA in Productively Infected Cells.- 4.4. Integration of Viral DNA in Cells Abortively Infected with Adenoviruses.- 4.5. Integration of Viral DNA in Adenovirus-Transformed Cells.- 5. Simian Virus 40 (SV40).- 5.1. The SV40 System.- 5.2. Integration in the Productive System.- 5.3. Substituted SV40 Genomes.- 5.4. Mixed Transcripts Containing Viral and Host Sequences.- 5.5. Integration of SV40 DNA in Transformed and Abortively Infected Cells.- 6. Polyoma Virus.- 7. The Adeno-SV40 Hybrid Viruses.- 8. Herpesvirus.- 8.1. Epstein-Barr Virus.- 8.2. Herpesvirus saimiri and ateles.- 8.3. Herpes Simplex Virus Type 2.- 8.4. Marek's Disease.- 9. Integration of the Genome of RNA Tumor Viruses.- 9.1. The Provirus Hypothesis.- 9.2. Virus-Specific DNA in RSV-Transformed Cells.- 9.3. Integrated RSV DNA.- 10. Endogenous Viral DNA.- 10.1. Induction of RNA Tumor Viruses in "Normal" Cells.- 10.2. Virus-Specific DNA and RNA in "Uninfected" Cells.- 10.3. Genetic Analysis.- 11. Outlook.- 11.1. Integration.- 11.2. Need for More Refined Technology.- 11.3. Site of Integration.- 11.4. Pattern of Integration.- 11.5. Integration-A General Phenomenon.- 11.6. Consequences for the Host.- 11.7. The Mechanism of Integration.- 11.8. Repressorlike Mechanism in Virus-Transformed Eukaryotic Cells.- 11.9. Integration and Transformed State.- 12. References.- 5 Cell Transformation by RNA Tumor Viruses.- 1. Introduction.- 2. Transforming Agents.- 2.1. Sarcoma Viruses.- 2.2. Leukemia Viruses.- 3. Events in Transformation.- 3.1. General Features of Sarcoma Virus Transformation.- 3.2. Establishment of Infection.- 3.3. Formation of Provirus.- 3.4. Dependence of Virus Infection on Cell Cycle.- 3.5. Expression of Provirus.- 3.6. Abortive Expression.- 3.7. Assay.- 4. Genes for Transformation.- 4.1. RNA in the Virion.- 4.2. Presence of the Transforming Gene.- 4.3. Size of the Transforming Gene.- 4.4. Location of the Sarcoma-Specific Gene within the Virus Genome.- 4.5. Origin of the Transforming Gene.- 5. Mutants of Transforming Virus.- 5.1. Mutants Defective in Replication.- 5.2. Mutants Defective in Transformation.- 5.3. Temperature-Sensitive Mutants.- 5.4. Revertants of Transformed Cells.- 6. Alteration of Cells by Transformation.- 6.1. Carbohydrates, Lipids, and Proteins.- 6.2. Protease.- 6.3. Tumor-Specific Surface Antigen.- 6.4. Transport.- 6.5. Agglutination by Lectin.- 6.6. Membrane Fluidity.- 6.7. Microtubules and Microfilaments.- 6.8. Cyclic AMP and Its Metabolism.- 6.9. Cell Morphology.- 6.10. Changes in Growth Characteristics.- 6.11. Other Properties.- 7. Concluding Remarks.- 8. References.